ITk Strip Electronics Activities at UC Santa Cruz: Data Transmission, ASIC Design

Jason Nielsen

Santa Cruz Institute for Particle Physics University of California, Santa Cruz

US ATLAS ITk Strip Project Meeting
May 11, 2016

Overview of UCSC Electronics Activity

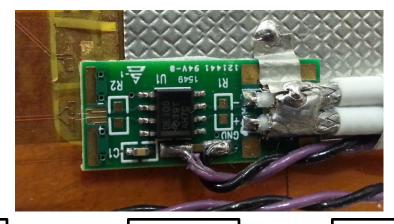
- Tight focus on critical items
- R&D on electrical data transmission along stave
 - Point-to-point data transmission at 640 Mbps
 - Multi-drop clock/command transmission at 160 Mbps
 - Transmission protocols and signal conditioning
 - No construction responsibilities here; complete R&D for final strip detector design in 2016 (needs to be finished for TDR)
- ASIC design for strip detector readout
 - Functional block design for ABC/HCC chip families
 - Testbench simulation code for ABC/HCC verification
 - Sample driver designs for low-power signaling
 - This critical-path design work will need to continue for the next few years

Data Transmission R&D

- #1 on the "top-10" priority list from Strip Project Leaders: "Can we count on 640 Mbps data transmission on long flex tapes?"
 - Point-to-point transmission on dedicated differential striplines
 - Data rate from hybrids is set by the 1 MHz readout spec
 - How do extremely long flex tapes (1.4 m) behave when sandwiched between silicon strip sensors and carbon fiber stave?
 - What additional signal conditioning is required? (8b/10b, pre-emphasis)
- Is multi-drop transmission of 160 Mbps clock and command possible with so many hybrids?
 - What special considerations are needed for receivers on the hybrids?
 - What is the acceptable bit error rate on the command lines?
- We were asked to work on DAT by Strip Project Leaders, due to special expertise. This work must converge soon! (before TDR)

Point-to-Point Transmission at 640 Mbps

- Major R&D involving shield planes embedded in tape or stave
 - Bottom shield: current carbon fiber thickness seems insufficient; need additional metal layer on tape to provide conductive shield
 - Top shield: sensors have ~100 nm of backside metallization
- Test different shielding strategies, together with prototype stave
 - Mock-up mounted on thick copper baseplate delivered bandwidth significantly above 640 Mbps, even without 8b/10b encoding or preemphasis
- Plan to test new tape incorporating our design feedback
- Need to evaluate bandwidth measurements and bit-error rate using new HCC test drivers from Penn


Bus Tape Prototypes

					/ 1			
_	Tape	Length	Track / Gap	Bottom surface	Top shield/surf ace			
	Old test tape	126 cm	130-140 um / 150-160 um	Copper surface	Full/partial /no shield			
	Full layout without sensors	~125 cm	87-93 um / 102-114 um	Carbon fiber	None			
	Full layout with sensors	~125 cm	87-93 um / 102-114 um	Carbon fiber	Sensors			
	New test tape	132 cm	Varying	Copper shield	6 variants	9# 91/81/8		
	. Nielsen (Santa (Cruz)	USAF	LAS SUIPS Ma	V11, 2016	1 1	J	

Test Equipment at SCIPP

Each tested tape link had driver and receiver on the ends. They
were connected to coaxial lines going to/from BERT systems.

Coax from BERT

Driver

Tape

Receiver

Coax to BERT

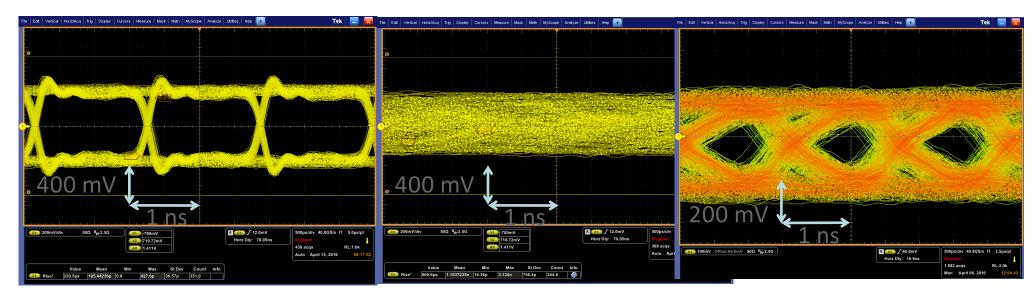
 Dedicated transceiver for multi-drop SLVS studies: AUEIO chip (J. DeWitt)

Measurements at 640 Mbps

- Point-to-point links in newest bus tape are mostly unshielded, but
 - impedance is still uniform, matches 100 Ω
 - Determined with TDR measurements

Тор	Impedance		
None	99.6 +/- 0.8 Ω		
Sensors	95.6 +/- 0.3 Ω		

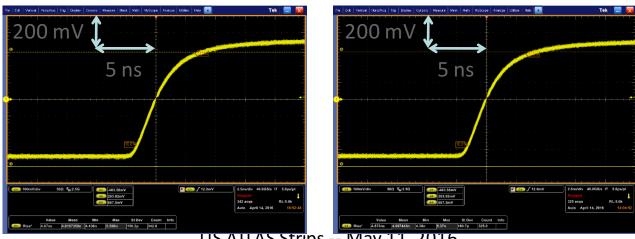
 Results on new tape (co-cured with carbon fiber) not as good as old tape (copper baseplate), due to resistive losses in carbon fiber


Line type	8/10 b?	Pre- emphasis?	TX BW [Gbps]	Payload BW [Gbps]	Error Rate
Old tape (full shield)	No	No	0.777	0.777	9.04e-14
	Yes	No	1.244	0.995	< 1.39e-14
New tape (with sensors mounted)	No	No	< 0.622	< 0.622	
	Yes	No	< 0.622	< 0.622	

Measurements at 640 Mbps

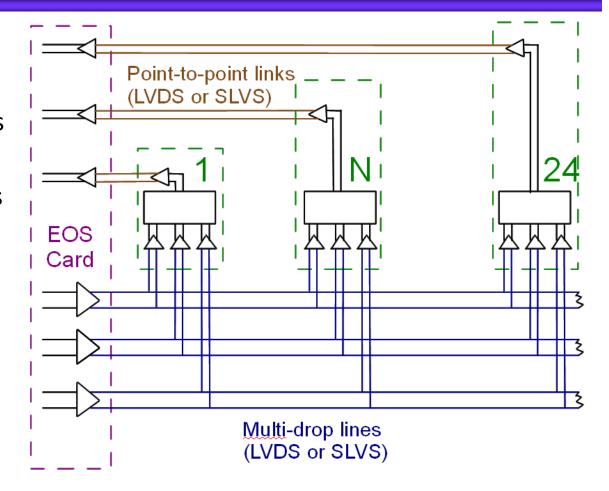
Tape input (post-driver)

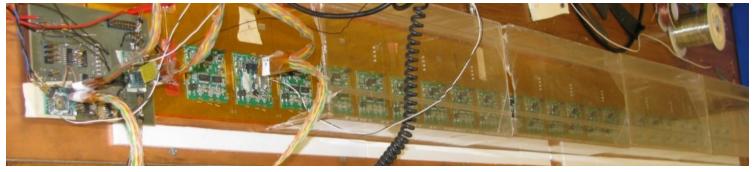
Tape output on CaF


Tape output on copper

Rise times on order of 5 ns (too long); may need pre-emphasis

No sensors


With sensors



Multi-drop Transmission at 160 Mbps

Loop-back test setup

- Commercial buffers represent hybrid endpoints
- But replace some
 "hybrids" with AUEIO chips
 to test SLVS protocol
- Tests of older tape demonstrated error rate less than 10⁻¹² for signal amplitudes larger than 100 mV

ASIC Design Development

- Designer Joel DeWitt has been part of the design team for the ITk
 Strip Readout ABC/HCC chip set since the beginning
- Very close collaboration with the Penn and CERN IC designers
- For the first prototypes of ABC130 & HCC130, he developed the original testbench simulation code to verify the ABC/HCC interactions in addition to other circuit blocks such as the command decoder.
- For the ABC* now in development, he has designed at least 12 circuit blocks including the top-level command decoder and readout module, and the readout serializer.
- As the logic blocks of the ABC* are completed, Joel will switch his attention to help Penn with the design of the HCC*.

Summary from UCSC

Data Transmission

- Deliverables (from R&D efforts only, no construction):
 - High-speed bit-error rate testing of prototype bus tapes with realistic grounding and shielding conditions
 - Feedback on bus tape layout, stave facing design, communications protocols
- People involved: V. Fadeyev, A. Grillo, F. Martinez-McKinney, J. Nielsen, undergrads
- Dependence on resources outside U.S.:
 - Long stave bus tapes are designed by collaborators in UK (Oxford/RAL)

ASIC Design

- People involved: J. DeWitt
- Current efforts: functional blocks for ABC* and HCC* designs
- Anticipated timeline: design schedule for ABC* and HCC*